Conduct quantitative research with PM and other quants to develop and back-test different machine learning and statistical models, as well as productionize such models.

Combine sound financial insights and machine learning techniques to explore, analyze, and harness a large variety of datasets.

Use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave.

Apply machine learning to a vast array of datasets


PhD degree in Computer Science/Engineering or Statistics with specialization in Machine Learning

Experience working with large datasets and machine learning techniques

Experience in one or more of deep learning, reinforcement learning, non-convex optimisation, Bayesian non-parametrics, NLP or approximate inference.

Publications at top conferences such as NeurIPS, ICML, ICLR etc. is highly desirable.

Experience in a high performance language (ideally C++, or similar… languages)

Outstanding performance in any quantitative field or contest (Kaggle, hackathons, olympiads, academic contests etc).

Experience implementing machine learning algorithms in industry.

They are open to ML quants who are already working within finance or ML quants within tech who are interested to move to finance.


Please send a PDF CV to


Eka Finance


Language requirements:

Specific requirements:

Educational level:

Level of experience (years):

Senior (5+ years of experience)

Tagged as: , , ,